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Abstract

We present a method for the fast and accurate computation of distributed heat potentials in two dimensions. The dis-
tributed source is assumed to be given in terms of piecewise space–time Chebyshev polynomials. We discretize uniformly in
time, whereas in space the polynomials are defined on the leaf nodes of a quadtree. The quadtree can vary at each time
step. We combine a product integration rule with fast algorithms (fast heat potentials, nonuniform FFT, fast Gauss trans-
form) to obtain a high-order accurate method with optimal complexity. If N is the number of time steps, M is the max-
imum number of leaf nodes over all the time steps and the input contains a qth-order polynomial representation of f, then,
our method requires Oðq3MN log MÞ work to evaluate the heat potential at arbitrary MN space–time target locations. The
overall convergence rate of the method is of order q. We present numerical experiments for q = 4, 8, and 16, and we verify
the theoretical convergence rate of the method. When the solution is sufficiently smooth, the 16th-order variant results in
significant computational savings, even in the case in which we require only a few digits of accuracy.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we present a fast high-order algorithm for the solution of the heat equation with a distributed
force f ðx; tÞ:
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¼ Duþ f ðx; tÞ in X; where X ¼ ½0; 1�2 and t 2 ð0; T �; ð1Þ

uðx; 0Þ ¼ 0 and uðC; tÞ ¼ 0; ð2Þ

where C is the boundary of X. Using potential theory, the solution uðx; tÞ can be written as
uðx; tÞ ¼
Z t

0

Z
X

Gðx; t; y; sÞf ðy; sÞdy ds; ð3Þ
where Gðx; t; y; sÞ is the Green’s function. In our method we assume that the distributed force f is given as a set
of N quadtrees fQ0;Q1; . . . ;QN�1g. Each quadtree Qk contains a space–time piecewise Chebyshev polynomial
representation of f within X� ½kDt; ðk þ 1ÞDt�, where Dt ¼ T

N. Our method is adaptive in space and uniform in
time. The evaluation points (also referred to as ‘‘targets”) are assumed to belong to a domain x � X.

A direct computation of (3) using generic numerical quadratures is expensive and inaccurate. It is inaccu-
rate because the integration kernel is sharply peaked near the evaluation point. It is expensive because its eval-
uation requires OðNMÞ work for every x, where N and M are the number of quadrature points in time and
space, respectively. Therefore, the cost of evaluation at N ;M temporal and spatial points would be OðN 2M2Þ.

1.1. Time domain decomposition: far and local part

Our scheme is based on an algorithm, first proposed by Greengard and Strain [13], that eliminates the his-
tory dependence of the time integral in (3) by combining two (analytically) equivalent series expansions of the
heat kernel, a Fourier based and a method-of-images based:
Gðx; t; y; sÞ ¼ 4
X
n2Z2

þ

Y2

i¼1

e�jnj
2p2ðt�sÞ sinðnipxiÞ sinðnipyiÞ; ðn ¼ fn1; n2g; jnj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2

q
Þ ð4Þ

¼ 1

4pðt � sÞ
X
n2Z2

X
r1¼�1

X
r2¼�1

r1r2e�
ðx1�r1y1�2n1Þ2þðx2�r2y2�2n2Þ2

4ðt�sÞ : ð5Þ
The convergence rate of the two expansions depends on jt � sj. At a time s close to the evaluation time t, the
method-of-images expansion (5) converges faster than the Fourier one. At distant times the opposite is true,
the Fourier expansion (4) converges faster. This fact motivates a splitting of the volume potential (3) into a far
and a local part:
u ¼ uF þ uL ¼
Z t�d

0

Z
X

Gf þ
Z

t�d

Z
X

Gf ; ð6Þ
where d is a small parameter. Typically, d ¼ lDt for some positive integer l which will be defined in Section 5.1.
The Fourier expansion is used to compute uFðx; tÞ and the method of images expansion for uLðx; tÞ. For s in
ð0; t � dÞ, the truncation error for the p-term Fourier series expansion of G is exponentially decaying with
increasing p. If we assume that all target points are sufficiently far from the boundary of the domain X, then
the terms with jnj > 0 in the local expansion of the Green’s function are decaying exponentially within the
interval ðt � d; tÞ.1

Far part. Upon truncation of the Fourier expansion, the far part can be approximated by
uFðx; tÞ � 4
Xp

n2¼1

Xp

n1¼1

Cnðt; dÞ sinðn1px1Þ sinðn2px2Þ; ð7Þ

where Cnðt; dÞ ¼
Z t�d

0

e�jnj
2p2ðt�sÞf̂ nðsÞds; ð8Þ

f̂ nðsÞ ¼
Z

X
f ðy; sÞ sinðn1py1Þ sinðn2py2Þdy: ð9Þ
Section 5 for a discussion on how to choose p and d. The algorithm can be extended to the case in which the evaluation points are
e boundary of X, but the details are tedious without offering further insight.
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The following recurrence is the key feature of Greengard and Strain’s algorithm:
Cnðt þ Mt; dÞ ¼ e�jnj
2p2DtCnðt; dÞ þ U n½f̂ �; ð10Þ

where U n½f̂ � ¼
Z tþDt�d

t�d
e�jnj

2p2ðtþDt�sÞf̂ nðsÞds; ð11Þ
Dt is the size of time step. At each time step, the far part computation involves the evaluation of the discrete
sum (7) and the update of the coefficients Cn using (10).

Local part. Upon truncating the method-of-images expansion the local part can be approximated by
uLðx; tÞ �
Z t

t�d

Z
X

e�
jx�yj2
4ðt�sÞ

4pðt � sÞ f ðy; sÞdyds: ð12Þ
One can show that the integrand in (12) is a smooth function in s. Therefore, we can use any qth-order quad-
rature rule with nodes and weights fsk;wkgq

k¼1 (we discuss our choice in Section 5):
uLðx; tÞ ¼
Xq

k¼1

wk

4pðt � skÞ
G4ðt�skÞ½f ð�; skÞ�ðxÞ; ð13Þ

where G4ðt�skÞ½f ð�; skÞ�ðxÞ ¼
Z

X
e
� jx�yj2

4ðt�sk Þf ðy; skÞdy: ð14Þ
Therefore, the evaluation of the local part involves performing the Gauss transform of f at the quadrature
nodes sk and then computing the discrete sum (13).

Now we can outline the algorithm. Given f, we use a time marching scheme in which the solution is time
decomposed into two parts, the far and local. To compute the far part, we need to evaluate equations (9), (11),
(10), and (7) – in that order. These computations involve evaluations of the sine transform of f, using the Fou-
rier coefficients of f to update the coefficients of uF, and use of the inverse Fourier transform to get back to
space coordinates. To compute the local part, we need a few fast Gauss transforms to evaluate (14) at the
sk time points needed for the time quadrature (13). This scheme, however, suffers from several technical dif-
ficulties: it should support nonuniform discretizations, and it should be fast. Below we describe algorithmic
challenges related to complexity and high-accuracy.

Complexity. A direct evaluation of the far and local parts of u becomes non-optimal because of the follow-
ing operations:

	 Since f is not given on a uniform grid, computing fff̂ nðsÞgp
n1¼1g

p
n2¼1, requires OðMp2Þ, can be very expensive

as we typically expect p2 ¼ OðMÞ. (For example, in the case in which we need to build a high-order repre-
sentation of the solution, we would have that as we increase the accuracy we need more targets M and the
value at each target should be increasingly accurate.)
	 Also, computing the inverse sine transform of Cn can be expensive, since the evaluation points are nonuni-

formly distributed.
	 Finally, computing the Gauss transform of f at M target locations from the M leaf nodes requires OðM2Þ

work.

Accuracy. The computation of uF; uL involves the numerical evaluation of the sine transform (9), Gauss
transform (14), and time integrals (11) and (12). The main challenges in constructing high-order convergent
schemes for these integrals are the following:

	 The kernel e�jnj
2p2t in the far part update (11) is sharply peaked for large values of jnj (see Fig. 1(a)). Special

quadrature rules are needed to compute it accurately for all jnj.
	 As shown in Fig. 1(b), the kernel in the local part is sharply peaked near the evaluation point ðx; tÞ. Thus,

the numerical evaluation of Gauss transform (14) will not be straightforward.
	 The input f ðx; tÞ is given on adaptive data structures. Hence, the numerical integration schemes should be

designed to handle adaptivity.
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Fig. 1. Plot of kernels that appear in the far and near parts of the volume potential. The computation of far part update (11) requires
convolution with the kernel e�jnj

2p2 t that is plotted in (a) for different values of jnj, with t ¼ 0:01. The kernel is sharply peaked near t ¼ 0 for
higher values of jnj. In (b) we plot the one-dimensional kernel e�jx�yj2=4t=4pt that appears in the local part evaluation, with x ¼ 0:5. At t ¼ 0
and as y ! x, the kernel is sharply peaked. Hence, a direct discretization of (11), (14) using standard quadrature rules is not
computationally efficient.
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1.2. Synopsis of our method

One can ‘‘easily” design schemes that are high-accurate but are too expensive to be practical. Our goal is to
devise a method that can deliver both accuracy and speed. With this design goal, we have chosen a Chebyshev
polynomial representation for f. As we will see in later sections, this choice allows accurate precomputation of
difficult integrals using product-quadratures,2 fast transformations between space and frequency domains,
allows adaptive representations, and is numerically stable.

The main features of our algorithm are:

	 We propose a spectral version of the fast Gauss transform to optimally compute the continuous Gauss
transform of a function given by a piecewise polynomial representation (Chebyshev). We shall term this
approach as the ‘‘CFGT” for Chebyshev Fast Gauss Transform. CFGT has a complexity and order of
accuracy that are independent of the bandwidth the Gaussian. We compute the spatial integral in the local
part (14) using CFGT.
	 We propose a spectral version of the nonuniform fast Fourier transform to optimally compute the Fourier

coefficients of a piecewise Chebyshev polynomial function, which we term ‘‘CNUFFT” for Chebyshev
Nonuniform Fast Fourier Transform. We use CNUFFT to accelerate the computation of f̂ n in (9). We
use the inverse nonuniform FFT (INUFFT) for the fast computation of discrete sum (7).
	 We compute the Chebyshev representation of f̂ nðsÞ and then compute the time integral (11) exactly using

recurrence relations. Since the kernel in (11) is not approximated, the convergence of this scheme is inde-
pendent of jnj.

In a nutshell, the main contributions of this work are the extensions of the nonuniform FFT and the fast
Gauss transform for piecewise Chebyshev polynomial representations and combining the two transforms to
get a fast, high-order accurate volume heat potential evaluation scheme.
2 To illustrate the construction of the product integration rule, consider the computation of the transform, F ðxÞ ¼
R 1
�1 e�xyf ðyÞdy at

some particular x. Assume that f ðyÞ ¼
Pq�1

k¼0fkT kðyÞ; where T kðyÞ is Chebyshev polynomial of order k and fk is the corresponding
coefficient of f. Then, we have

F ðxÞ ¼
Xq�1

k¼0

fkIkðxÞ and Ik ¼
Z 1

�1

e�xyT kðyÞdy:

The product integration rule is based on computing the moments Ik recursively starting from a base condition. In this example all the
higher moments can be computed from I0.
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1.3. Related work

Integral equations are widely used to model physical phenomena that involve diffusion processes, for exam-
ple, see [6]. The need to integrate over the entire history has been a major hindrance for using integral equation
formulations in large scale numerical simulations. The fast Gauss transform [14], reduces the complexity of
computing the discrete Gauss transform
GdðxiÞ ¼
XM

j¼1

qje
�jxi�sjj2=d; i ¼ 1; 2; . . . ;N ð15Þ
from OðNMÞ to OðN þMÞ. The FGT can be used to accelerate the computation of the solution of an initial
value problem for the heat equation. Using potential theory, it can be shown that an interior boundary value
problem for the heat equation can be obtained by solving integral equations that require evaluation of layered
heat potentials on the boundary of domain. The algorithm proposed in [13] provides a strategy for the rapid
evaluation of such potentials. Fast algorithms for the exterior domain problems were developed in [12].

Along with fast summation techniques, high-order convergent schemes are also required for the efficient
evaluation of the heat potentials. To our knowledge, the only fast, high-order method for the diffusion equa-
tion based on integral equations, is that proposed by Strain in [22]: a high-order convergence was obtained by
analytic integration of the monic-polynomial approximation of the input. This method is difficult to extend
beyond the presented fourth-order convergent scheme, since the monic-polynomial basis is ill-conditioned.
A natural question is, ‘‘do we really need a higher-order method?” The answer, provided the solution is suf-
ficiently regular, is yes. This is because the higher-order method is significantly faster – even in the case in
which we require only a few correct digits (see Section 6).

Gauss transform. Apart from applications in computational physics, FGT has been applied in diverse fields
like computer vision [8], machine learning [28,27], management sciences [4,5] and others [14]. The central idea
of the FGT is to use a degenerate approximation of Gaussian kernel based on Hermite polynomials. It turns
out that the most expensive part of the FGT algorithm is translating the Hermite expansions from the source
to the target boxes. A plane-wave expansion for the Gaussian that makes the translation operator diagonal
was proposed in [15]. The complexity of translation per target box was thereby reduced from
Oðð2nþ 1Þddpdþ1Þ to Oðð2nþ 1ÞdpdÞ, where p is the number of terms retained in the truncated expansion, d

is the number of dimensions and ð2nþ 1Þd are the number of cells that cover the support of the Gaussian.
In [15], the authors present a modified FGT algorithm, to further reduce the complexity of the FGT to
Oð3dpdÞ by transforming efficiently local expansions of the potential to neighboring boxes using plane-
wave-based translation operators. Our implementation also uses such plane-wave expansions of the Gaussian.

Although much attention was devoted in the acceleration of the discrete Gauss transform, only the algo-
rithm of Strain [22] discusses the fast computation of the continuous Gauss transform. In this paper, we
extend that work to fast and higher-order computation of the continuous Gauss transform of a function
defined by a piecewise Chebyshev polynomial representation.

Nonuniform FFT. We do not attempt to review all the related literature on the nonuniform FFT algorithm.
The method was first introduced by [7]. A sample of articles that discuss the application of nonuniform FFT to
accelerate the computation of Fourier coefficients for piecewise smooth functions include [3,9,20]. The first one
uses projection of f on a spline multiresolution analysis which is then used to compute the Fourier coefficients;
the second one uses Lagrange interpolation, and the last one considers piecewise constant functions. In all
these papers, there is a discussion for fast computation in the case of non-smooth data. In this paper, we con-
sider the situation in which the data is given in terms of piecewise Chebyshev polynomial coefficients rather
than samples at a set of points. The method can cope with discontinuities along the edges of the quadtree
nodes, but is not an efficient scheme for general discontinuous functions.

Product integration. Recursive product integration rules are not new. Integration based on recursion using
Chebyshev polynomials dates back to the earlier papers by Clenshaw and Curtis [25] and Filippi [10]. The ideas
were generalized by Piessens and Branders [17] to compute a variety of integral transforms. We only need recur-
rences for two kernels in the evaluation of (3). We construct the recurrences for these kernels in our context,
which are a trivial extension of the ones presented in [17]. These kind of recurrences were also used in [24] in
the context of developing high-order solvers for one dimensional diffusion equation in moving domains.
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1.4. Contents

In Section 2, we discuss Chebyshev polynomials and give the construction of the product integration rules
for the heat kernel. We discuss the CFGT and CNUFFT in Sections 3 and 4, respectively. In Section 5 we
present the overall algorithm for the evaluation of the heat potential. We discuss numerical experiments for
the transforms and the heat equation in Section 6.

2. Chebyshev representation and product integration

First, we review a few basic properties of Chebyshev polynomials (see [18] for more detailed exposition). A
nth-order Chebyshev polynomial denoted by T nðnÞ defined on the interval n 2 ½�1; 1� has a closed form expres-
sion given by T nðnÞ ¼ cosðn cos�1 nÞ and T nðnÞ can be constructed from lower-order polynomials using the
recurrence
T nðnÞ ¼ 2nT n�1ðnÞ � T n�2ðnÞ; T 0ðnÞ ¼ 1; T 1ðnÞ ¼ n: ð16Þ

We denote the leaf nodes of a quadtree Q by ‘1; ‘2; . . . ; ‘M . In a leaf node ‘ and at a time s 2 ½t; t þ Dt�, the
function f ðx; sÞ is represented using its Chebyshev coefficients
f ðx; sÞ �
Xq�1

n¼0

Xq�n�1

m¼0

f ‘n;mðsÞT nðn1ÞT mðn2Þ; ðn1; n2Þ 2 ½�1; 1�2; ð17Þ

and f ‘n;mðsÞ �
Xq�1

k¼0

f ‘n;m;kT k
2

Dt
ðs� tÞ � 1

� �
; ð18Þ
where ðn1; n2Þ are local coordinates of ‘. Since we include all the polynomials of order q� 1, this is a qth-order
approximation of f ðx; sÞ. We use indexing scheme of [2] to represent the quadtree.

Corresponding to each time step ½kDt; ðk þ 1ÞDt�, we have a quadtree Qk. Each leaf node of Qk contains a
space–time Chebyshev polynomial representation (17, 18) of f. We note that the number of leaf nodes in each
Qk need not be the same.

2.1. Recurrence relations

To illustrate the ideas for the construction of product integration rules, we discuss the computation of
IðaÞ ¼

R 1

0
e�axf ðxÞdx, where f ðxÞ is a locally smooth function and a is a real (or complex) number. The interval

½0; 1� is divided into arbitrarily-sized cells, such that in each cell, a qth-order Chebyshev polynomial approx-
imation of f ðxÞ is within the prescribed accuracy. The integration is carried out over each cell C with center c

and radius r:
IðaÞ ¼
X

C

Xq�1

n¼0

fn

Z cþr

c�r
e�axT n

x� c
r

� �
dx ¼

X
C

Xq�1

n¼0

fnInðaÞ: ð19Þ
We derive recurrence relationships to compute the moments In in a more general setting. For any constants
xa; xb; k; g such that �1 6 kxa þ g 6 kxb þ g 6 1,
In ¼
Z xb

xa

e�axT nðkxþ gÞdx; ð20Þ

¼ e�ax

2k
T nþ1

nþ 1
� T n�1

n� 1

� �� �xb

xa

þ a
Z xb

xa

e�ax

2k
T nþ1

nþ 1
� T n�1

n� 1

� �� �
; ð21Þ

) Inþ1 ¼ cnþ1 þ ðnþ 1Þ 2k
a

In þ
In�1

n� 1

� �
;

where cnþ1 ¼
nþ 1

a
e�ax T nþ1

nþ 1
� T n�1

n� 1

� �� �xb

xa

: ð22Þ
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If a
 1, then e�ax is sharply peaked and hence computing IðaÞ using numerical quadratures is quite expensive.
Whereas, the convergence rate of the product integration rule discussed here depends only on the order of
approximation of the input f ðxÞ. Since we used polynomials of order q� 1, the overall rate of convergence
is q. However, the recurrence (22) is unstable for smaller values of jaj and hence higher moments cannot be
computed accurately. In this case, we resort to Olver’s algorithm [26]. (We give details in the Appendix.)

3. The Chebyshev fast Gauss transform

In this section, we present a fast, high-order algorithm for evaluating the continuous Gauss transform
defined by
Gdf ðxÞ ¼
Z

X
e�
jx�yj2

d f ðyÞdy; X ¼ ½0; 1�2: ð23Þ
The input is a quadtree with leaf nodes f‘kgM
k¼1. Each leaf node contains a qth-order Chebyshev polynomial

representation of f. The aim is to evaluate fGdf ðxiÞgM
i¼1 at M targets within a pre-specified accuracy �, for

any required d and in an optimal OðMÞ time.
For a given d, the Gaussian centered at x decays exponentially outside a fixed interval xþ ½�rg

ffiffiffi
d
p

; rg

ffiffiffi
d
p
�2,

where rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=�Þ

p
. We call this interval the support of Gaussian. Below we describe two methods to com-

pute Gdf : the direct evaluation and the kernel expansion-based algorithm. The overall algorithm combines
these two methods. In this way, we obtain an algorithmic complexity that is independent of d.

3.1. Direct evaluation

We can compute Gdf from the piecewise polynomial representation of f using the following steps:

	 We find the set of leaf nodes that cover the support of Gaussian centered at x. We shall call this set the
interaction list of x and denote it by I ½x�.
	 We truncate the domain of integration to I ½x�.
	 We compute and add the contribution of each ‘ 2 I ½x�, to obtain Gdf ðxÞ.

The contribution of a leaf node ‘, with center c and side length 2r, to Gdf ðxÞ is given by
G‘
dðxÞ ¼

Z c1þr

c1�r

Z c2þr

c2�r
e�
jx�yj2

d f ðyÞdy ¼
Xq�1

k¼0

Xq�k�1

j¼0

f ‘k;j

Z 1

�1

e
� x1�c1ffiffi

d
p � rffiffi

d
p n1

� �2

T kðn1Þdn1

Z 1

�1

e
� x2�c2ffiffi

d
p � rffiffi

d
p n2

� �2

T jðn2Þdn2

¼ IT ½x1 � c1�f‘I ½x2 � c2�;
where f‘ is the matrix that contains the Chebyshev coefficients of f in ‘. Here, we performed the change of
variables nk ¼ yk�ck

r ; k ¼ 1; 2. The entries of the moment vectors are given by
Ij½xk � ck� ¼
Z 1

�1

e
� xk�ckffiffi

d
p � rffiffi

d
p nk

� �2

T jðnkÞdnk; k ¼ 1; 2 and 0 6 j < q: ð24Þ
These moments are computed exactly using the recurrence relation (67) and appropriate scaling factors k; g.
The direct evaluation is useful when the size of Gaussian support is small compared to the smallest leaf node;
in this case we need OðMq2Þ work to evaluate Gdf at M target points.

3.2. Degenerate kernel expansion

When the support of the Gaussian spans OðMÞ leaf nodes, direct evaluation leads to OðM2Þ complexity.
Instead, following [14,15], we use the following plane-wave expansion of the Gaussian
e�
jx�yj2

d ¼ 1

4p

Z
R2

e�
jzj2

4 e
iz�ðx�yÞffiffi

d
p

dz: ð25Þ
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The numerical evaluation of the above equation involves the following approximations:

	 The domain of integration is truncated to a finite interval ½�L; L�2.
	 Numerical integration of the truncated plane-wave expansion.

The truncation of R2 by ½�L; L�2 results in a e�L2
rate of convergence for the trapezoidal rule. Indeed, let

2p þ 1 be the number of trapezoidal nodes. Then, in [23] it shown that
3 No
differen
e�
jx�yj2

d � L2

4pp2

X
�p6k6p

e�
Ljkj
4pð Þ

2

e
iLk�ðx�yÞ

p
ffiffi
d
p

: ð26Þ
Following [14], we use the multi-index notation by which �p 6 k 6 p implies �p 6 kj 6 p; for j ¼ 1; 2. Clearly
p depends on how oscillatory the integrand in the truncated plane-wave expansion is, which in turn depends
on jx� yjmax ¼ rg

ffiffiffi
d
p

. For a required precision � ¼ 10�14 the parameters should be
rg ¼ 6; L ¼ 11 and p ¼ 21: ð27Þ

The domain X ¼ ½0; 1�2 is divided into uniform boxes of length 2rb. In our implementation, we set
rb ¼ 2blog2

ffiffi
d
p
c�1 so that a particular box is either fully embedded in some leaf node or vice-versa.

Remark. Note that we have two grids: the first one is a quadtree to represent f ðyÞ and the second one is a
uniform grid required by FGT (see Fig. 2(a)).

Since rb ¼ Oð
ffiffiffi
d
p
Þ, the support of Gaussian centered at a particular box C spans a fixed number of boxes.

These boxes belong to C’s interaction list, denoted by, I ½C�.3 Suppose box B belongs to I ½C�. We introduce the
following terminology:

wB the wave expansion of box B.
tBC the operator that translates the wave expansion of box B to C.
lC the local expansion of box C.

Let kk ¼ iLk

p
ffiffi
d
p and xC; yB denote the centers of boxes C;B, respectively. Then, we define,
wB
k ¼

Z
B

ekk�ðyB�yÞf ðyÞdy; �p 6 k 6 p; ð28Þ

tBC
k ¼ ekk�ðxC�yBÞ; ð29Þ

lC ¼
X

B2I ½C�
wB � tBC; ð30Þ

vC
k ðxÞ ¼

L2

4pp2
e�

Ljkj
2pð Þ

2

ekk�ðx�xCÞ; ð31Þ
where � symbolizes element-wise multiplication (Hadamard product). Following this notation, the Gauss
transform at a particular point x that belongs to a target box C can be written as
Gdf ðxÞ �
X
�p6k6p

vC
k ðxÞl

C
k : ð32Þ
The main steps involved in FGT can be summarized as follows:

	 At each source box B form wB.
	 At each target box C gather all the wave expansions from boxes belonging to I ½C� and form lC.
	 From lC compute the Gauss transform at each target that belongs to C.
tice that we already used the symbol I in the direct evaluation version and we also use the same symbol in the next Section in a
t context. The meaning of I should be clear from the context.
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Fig. 2. Here we illustrate one of the main steps involved in FGT. (a) The leaf nodes (shown in black) of the given quadtree are assigned to
regular boxes (shown in red). The size of the boxes is chosen so that each box corresponds to a node at some level of the quadtree. (b) At a
source box B, the influence of all the constituent leaf nodes is encoded in the wave expansion wB. The translation operator tBC transfers the
wave expansion of B to the target box C. At C, the influence of all the source boxes in I ½C� is encoded in the local expansion lC . Finally,
Gdf at a target that belongs to C is given by hlC ; vCðxÞi. (For interpretation of the references in colour in this figure legend, the reader is
referred to the web version of this article.)
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For additional details with respect to the implementation of the FGT algorithm, we refer the reader to
[14,15]. The main difference of CFGT from FGT is the computation of w at each source box, which we discuss
next.

Computing wave expansions. The computation of wB involves finding the contribution of the leaf nodes
within4 the box B (see Fig. 2(b))
4 Ap
in this
wB ¼
X
‘2B

w‘ � t‘B: ð33Þ
The definitions for w‘ and t‘B are similar to (28) and (29) i.e.,
w‘
k ¼

Z
‘

ekk �ðc�yÞf ðyÞdy; t‘Bk ¼ ekk �ðyB�cÞ: ð34Þ
Let c be the center and 2r be the length of ‘. Then, the wave expansion of ‘ can be computed as follows:
w‘
k ¼

Xq�1

n¼0

Xq�n�1

j¼0

f ‘n;j

Z c2þr

c2�r
ekk2

ðc2�y2ÞT n
y2 � c2

r

� �
dy2

Z c1þr

c1�r
ekk1

ðc1�y1ÞT n
y1 � c1

r

� �
dy1: ð35Þ
By the change of variables n ¼ yk�ck
r for k ¼ 1; 2 we have
w‘
k ¼ r2

Xq�1

n¼0

Xq�k�1

j¼0

f ‘n;j

Z 1

�1

e�kk2
rnT nðnÞdn

Z 1

�1

e�kk1
rnT jðnÞdn and w‘ ¼ IT½r�f‘I ½r�; ð36Þ

where Ijk½r� ¼ r
Z 1

�1

e�kk rnT jðnÞdn; �p 6 k 6 p and 0 6 j < q: ð37Þ
Each column of I is computed using the recurrences (22).
Acceleration techniques. Although there seem to be lot of exponential evaluations, most of them can be

precomputed.

1. Given the depth of the quadtree, we precompute the moments (37) for each level of the tree.
2. The translation operator t‘B depends on the relative position of ‘ within B. We first determine the distinct

relative positions possible for the given quadtree and box size rb. Then, we precompute the translation oper-
ator for each of these positions.
parently, it is possible that the box B could also be contained in a leaf node. It would be evident after we formally state CFGT that
case, the leaf node containing B interacts with the targets directly instead of forming wave expansions.
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3. The operator tBC depends on the relative position of B and C. The number of these is bounded from above
by ð2nþ 1Þ2 and we precompute the corresponding translation operators.

3.3. The complete algorithm

The implementation of the original FGT [14] is not efficient for the cases in which d is too small. In our
context, d is dictated by the quadrature nodes in time that are used to evaluate uLðx; tÞ. These nodes can be
arbitrarily close to zero. We now describe an algorithm that attains optimal complexity for any d.

We split the given quadtree into two trees (Fig. 3): one tree in which the size of the leafs is greater than rb

and one tree that all its leaves have a size that is smaller or equal than rb (Fig. 3(c)). The Gauss transform at
the targets is the sum of contributions from these two trees. In the first tree we use the direct evaluation ver-
sion, and in the second we use the kernel expansion-based algorithm.
Algorithm 1. Chebyshev fast Gauss transform

SPLIT THE TREE

for k ¼ 1 : M do
if rk 6 rb then
Assign the leaf node QðkÞ to QDirect.

else
Assign QðkÞ to QExpand.

end if
end for
Gdf ðxÞ ¼DirectEvaluation ðQDirect;xÞ + KernelExpansion ðQExpand;xÞ.
Algorithm 2. DirectEvaluation

INITIALIZATION
for k ¼ 1 : M do

Gdf ðxkÞ ¼ 0.
end for
EVALUATION
for k ¼ 1 : M do
Determine I ½xk� (the leaf nodes in the interaction list).
for each ‘ 2 I ½xk�

Add contribution of each leaf node in the interaction list
Compute the moments I ½x1 � c1� and I ½x2 � c2� (Eq. (24)).
Gdf ðxkÞþ ¼ IT ½x1 � c1�f‘I ½x2 � c2�.

end for
end for
Complexity. Let the number of leaf nodes be M and the number of targets be N. The cost of direct eval-
uation is Oðð2nþ 1Þ2q2N log MÞ. The factor ð2nþ 1Þ2 log M is the cost of finding the at most ð2nþ 1Þ2 leafs
in the interaction list of each target and q2 is the cost of computing moments (67) at each target.

Computing the wave expansions at the leaf nodes is5 Oðð2p þ 1Þ2q2NÞ since computing (36) for each k is
Oðq2Þ and we have �p 6 k 6 p. The translation w‘ ! wB requires Oðð2p þ 1Þ2Þ. Therefore, computing the
wave expansions at all the source boxes requires Oðð2p þ 1Þ2q2NÞ. The computation of the local expansion
at a target box requires visiting all the ð2nþ 1Þ2 source boxes in its interaction list. In [15], the authors discuss
5 A qth-order Chebyshev polynomial approximation has qðqþ 1Þ=2 coefficients. By using symmetries, we can show that the computation
of wave expansions at the leaf nodes can be reduced to OðN ðp þ 1Þðp þ 2Þqðqþ 1Þ=4Þ.
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a strategy to compute the local expansions by just visiting the neighbors. Using this strategy,6 the complexity
of forming the local expansion at a target box is Oðð2p þ 1Þ2Þ. Computing the Gauss transform at the targets
from the local expansions is Oðð2p þ 1Þ2NÞ. Hence, the overall complexity of the kernel expansion version of
CFGT is Oðð2p þ 1Þ2q2M þ ð2p þ 1Þ2NÞ.
Algorithm 3. KernelExpansion

INITIALIZATION
Precompute the moments I (equation (37)), given the depth of the quadtree.

FLAGGING

Determine the source and target boxes that interact

B0:=the minimal set of source boxes that covers all the leaf nodes.

C0:= the minimal set of target boxes that covers all the targets.

Find the source boxes that are in the interaction list of target boxes
B :¼ B0 \ I ½C0�.
Find the target boxes that are in the interaction list of source boxes

C :¼ C0 \ I ½B�.

COMPUTE WAVE EXPANSIONS

for each B 2 B do
for each ‘ 2 B do

Compute the wave expansion of ‘
w‘ ¼ IT ½r�f‘I ½r�.
Add the contribution of ‘ to wave expansion of B

wBþ ¼ w‘ � t‘B.
end for

end for

COMPUTE LOCAL EXPANSIONS
for each C 2 C do
for each box B 2 B \ I ½C� do

Translate the wave expansion of source box B to target box C
lCþ ¼ wB � tBC.

end for
end for

EVALUATE AT THE TARGETS

for each C 2 C do
for each x 2 C do

Gdf ðxÞ ¼< vCðxÞ; lC >.
end for

end for
4. The Chebyshev nonuniform fast Fourier transform

We present the algorithm in one dimensional setting. Consider the computation of Fourier coefficients of
f ðxÞ for x 2 ½0; 2p�, defined by
6 In
formed
f̂ k ¼
Z 2p

0

f ðyÞe�ikydy; k ¼ �M
2
; . . . ;

M
2
� 1: ð38Þ
order to use it, it is convenient to sort the target boxes using Morton ordering so that the local expansions of spatially close boxes are
consecutively.
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Fig. 3. In this figure we illustrate the tree splitting that we use in CFGT to obtain an algorithmic complexity that is independent of the
value of d. Subfigure (a) shows the quadtree, a target x, and the support of the Gaussian centered at x (blue box). For this d, we can
observe that a direct evaluation would be expensive because we have to loop through all the leaf nodes within the support. A kernel
expansion-based approach would also be expensive because it generates too many boxes. Hence, for optimal complexity, we split the tree
into two parts. Subfigure (b) shows the tree with the size of leaf nodes being greater than rb. To evaluate the Gauss transform at a point x,
we just need to visit the leaf nodes in the support of the Gaussian (the shaded ones). There can be a maximum of ð2nþ 1Þ2 of such leaf
nodes. Subfigure (c) show the tree with the size of leaf nodes being smaller or equal than rb. In this tree we use the kernel expansion-based
algorithm. Instead of visiting all the leaf nodes within the support, we only have to gather the wave expansion of the source boxes (red
boxes) that are within the support. The number of these source boxes is bounded from above by ð2nþ 1Þ2. (For interpretation of the
references in color in this figure legend, the reader is referred to the web version of this article.)
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The input is a Chebyshev polynomial representation of f ðxÞ on a binary tree data structure imposed on ½0; 2p�
with M leaf nodes. A direct computation of (38) requires OðM2Þ work. Here, we describe an extension of non-
uniform FFT that reduces the work to OðM log MÞ. (We follow the notation in [16].)

The first step in nonuniform FFT is to convolve f ðxÞ with the periodic heat kernel gsðxÞ ¼
P1

k¼�1
e�ðx�2kpÞ2=4s, the result of which would be a periodic function denoted by fsðxÞ:
fsðxÞ ¼ f �gsðxÞ ¼
Z 2p

0

f ðyÞgsðx� yÞdy: ð39Þ
Since fsðxÞ is smooth and 2p-periodic, its Fourier coefficients can be computed by the trapezoidal rule with Mr

nodes and by computing the discrete sum using FFT. So, the task at hand is to compute fs on an oversampled
regular grid i.e., at points xj ¼ jh; j ¼ 0; 1; ::;Mr � 1, where h ¼ 1=Mr. The oversampling ratio R ¼ Mr=M is
chosen based on the desired accuracy. In the definition of gs, each Gaussian has a support given by 4rg

ffiffiffi
s
p

,
where rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=�Þ

p
, for desired precision �. The number of oversampled grid points within the support

of a Gaussian in each direction, denoted by M sp, is given by M sp ¼ 2rg
ffiffiffi
s
p
=h.

Consider the computation of fsðxjÞ. The kernel gsðxj � yÞ in (39), is the sum of the Gaussian centered at xj

and its images. Depending on the choice of s and the location of target xj, only a few images of gs are non-
negligible within ½0; 2p�. For illustration purposes, it is sufficient to consider just the Gaussian centered at xj. In
Fig. 4, the support of Gaussian spreads over three leaf nodes ‘1; ‘2 and ‘3. The interval of integration in (39)
can thus be truncated to these three leaf nodes. The contribution of ‘1 that has Chebyshev coefficients ff ‘1

k g
q�1
k¼0

is given by
f ‘1
s ðxjÞ ¼

Xq�1

k¼0

f ‘1
k Ik; where Ik ¼

Z c1þr1

c1�r1

e�
ðxj�yÞ2

4s T k
y � c1

r1

� �
dy; ð40Þ

Ik ¼ k
Z 1

�1

e�
y�g
kð Þ

2

T kðyÞdy; where k ¼ 2
ffiffiffi
s
p

r1

; g ¼ xj � c1

r1

: ð41Þ
The contributions of ‘2 and ‘3 are computed similarly. Hence, the computation of fs at a particular target in-
volves visiting all the leaf nodes in which gs is non-negligible. Instead of finding the leaf nodes that influence a
target x, we loop over the leaf nodes and determine which targets they influence. This is efficient because all the
targets belong to a Cartesian grid.



Fig. 4. The support of a Gaussian centered at xj covers the leaf nodes ‘1; ‘2 and ‘3. Hence, only three leaves contribute to fsðxjÞ. The
contribution of each leaf node is given by the inner product of the constituent polynomial coefficients of f and the moments of polynomials
with the Gaussian. These moments are recursively computed using equation (67), which is discussed in the Appendix.

7780 S.K. Veerapaneni, G. Biros / Journal of Computational Physics 227 (2008) 7768–7790
Notation. The interaction list of a particular leaf node ‘k is the set of all regular grid points influenced by it,
denoted by I ½‘k�.

Notice that computing fs at a particular target is equivalent to computing the Gauss transform of f. How-
ever, we do not require FGT here because the targets belong to a Cartesian grid. The following lemma estab-
lishes the complexity of computing fs at the oversampled regular grid points.

Lemma 4.1. The cumulative sum of length of the interaction lists of all the leaf nodes is OðMÞ.

Proof. Consider a particular leaf node ‘k. The number of targets within ‘k is bounded from above by 2rk
hr
þ 1,

where hr ¼ 2p=RM . The number of targets in I ½‘k� that are to the right (and similarly to the left) of ‘k is given
by M sp. Therefore, we have
XM

k¼1

lengthðI ½‘k�Þ 6
XM

k¼1

2rkRM
2p

þ 2M sp þ 1 ¼ ð2M sp þ 1ÞM þ RM
XM

k¼1

rk

p
:

The sum of lengths of leaf nodes ð
PM

k¼12rkÞ is the length of domain ð2pÞ, and thus
XM

k¼1

lengthðI ½‘k�Þ 6 ð2M sp þ 1þ RÞM : ð42Þ
It follows that the complexity of computing fs, at Mr equispaced points, is Oð2Mð1þ RþM spÞqÞ, since each
leaf node contains q polynomial coefficients. h

Once fs is computed at all the points on the oversampled grid, FFT is used to compute f̂ sðkÞ in
OðMr log MrÞ time. The Fourier coefficients of f are extracted from f̂ s using the relation [16]
f̂ k ¼
ffiffiffi
p
s

r
ek2sf̂ sk: ð43Þ
The accuracy of the transforms f ! fs ! f̂ s, depends on the choice of parameters s;R;M sp. The details of the
analysis can be found in [7]. We follow [16] and note that for double precision M sp ¼ 12;R ¼ 4 and
s ¼ p2=4M2.

Precomputation. Although the moments I in equation (40) can be computed in constant time on the fly
using the recurrence (67), we can further accelerate the computations by precomputing the Chebyshev
moments of the Gaussian for a set of scaling values that only depend on the depth of the tree. We set
Mr ¼ 2dlog2RMe to minimize the number of such distinct values (see Appendix, for k and gÞ.

Sine transform. To compute the far part uF, we need to accelerate the sine transform (9) computation. To
accomplish this, CNUFFT can be used. The 1D analogue of sine transform is given by
f s
n ¼

Z 1

0

f ðyÞ sinðnpyÞdy; n ¼ 1; 2; . . . ;M : ð44Þ
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We cannot use the Fourier coefficients of f to compute its sine transform, since the period of underlying basis
for both these transforms differ by a factor of two. Instead, we extend f to the domain (0,2) by
7 Th
node c
F ðyÞ ¼
f ðyÞ y 2 ð0; 1Þ;
0 otherwise:

	
ð45Þ
The data structure for F is obtained by adding an extra leaf node to the binary tree representation of f with
c ¼ 3

2
; r ¼ 1

2
and setting the q polynomial coefficients of this leaf node to zero. The transforms on F are given by
F s
n ¼

1

2

Z 2

0

F ðyÞ sinðnpyÞdy; bF n ¼
1

2

Z 2

0

F ðyÞe�npydy: ð46Þ
We can compute bF using CNUFFT and then F s can be computed using the relation F s
n ¼ �Im½bF n�. The sine

transform of f can then retrieved from the relation f s
n ¼ 1

2
F s

n. In general, the extension f ! F will be discon-
tinuous. We do not lose accuracy since CNUFFT requires only piecewise smoothness.

4.1. 2D CNUFFT

Input: A quadtree data structure Q with M leaf nodes, each containing the qth-order Chebyshev coefficients
of f ðxÞ.7

Output: The Mo �Mo Fourier coefficients f̂ k1k2
, where � Mo

2
6 k1; k2 6

Mo
2
� 1.
Algorithm 4. 2D CNUFFT

INITIALIZATION

Given target precision, choose R; s;M sp.

Set Mr ¼ 2dlog2RMoe.
Precompute the FGT moments I for all possible scaling values.

CONVOLUTION

for k ¼ 1 : M do
Determine I ½‘k� (the interaction list of ‘kÞ.
for each x 2 I ½‘k� do
Compute t scaling factors fki; gig

2
i¼1;

For these values, extract the moments I1; I2 from the precomputed values.
Add the contribution of ‘k to fsðxÞ: fsðxÞþ ¼ IT

1 f‘k I2.
end for

end for Oðq2M2
r þ ð2M sp þ 1Þ2q2MÞ

FFT ON OVERSAMPLED REGULAR GRID

Using FFT, compute f̂ sk1k2
, for � Mr

2
6 k1; k2 6

Mr
2
� 1 OðM2

r log MrÞ.
Compute f̂ from f̂ s using analytic relations.
5. Computing heat potentials

Using CFGT and CNUFFT, we can compute the volume potential (3) in an optimal way. Here, we describe
our treatment of far and local parts after providing analysis for the optimal choice of the parameters p and d.

5.1. Optimal splitting in time

The choice of parameters fp; dg affects the overall complexity and the errors due to the truncation of the
kernel expansions (4) and (5). We assume that the targets are at least at a distance d away from the boundary
e linear quadtree representation of [2] stores just one index corresponding to each leaf node, the geometric information of the leaf
an be extracted from this index.
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of the unit box, that is, d ¼ inffkx� yk2 : ðx; yÞ 2 x� Cg. Then, we have the following error estimates for
truncation errors [19]:
8 It i
the pie
EFðp; dÞ ¼ O
e�p2p2d

pd

 !
and ELðd; dÞ ¼ O

e�d2=d

d

 !
: ð47Þ
In [21,19], d was chosen so that the truncation errors get reduced as N ;M are increased. In our case, N and M

are given parameters, which are decided solely based on resolving f ðx; tÞ within desired accuracy. Instead, we
proceed as follows. From the estimates (47), we can infer that

	 Given d, we obtain EL < � by requiring that d 6 d�. Similarly, EF < � if p P p�.
	 d� and p� are threshold values that depend on the domains X and x.

For example, if x ¼ ½0:4; 0:6�2, then for double precision, d� ¼ 0:002 and p� ¼ 55.
So, for a given � we must pick d; p such that d 6 d� and p P p�. When Dt is bigger than d�, we set d ¼ d� and

p ¼ p�. When Dt is smaller than d�, we have to reduce d to preserve optimality. This in turn forces p to be more
than p� to restrict EF within �. We set d ¼ lDt for some positive integer l. This means that the local part com-

putation involves l time steps. Using CFGT, the local part requires OðMlq3Þ work per time step. By using
CNUFFT and INUFFT, the far part requires OððM þ p2Þq3 log pÞ work per time step. Hence, the overall com-

plexity is OððMlþM log p þ p2 log pÞNq3Þ. We chose p ¼ c1

ffiffiffiffiffi
M
p

and l ¼ dc2
log M
NDt e. Then, the truncation errors

are given by
EFðM ;NÞ ¼ O
Nffiffiffiffiffi

M
p

log M
e�

p2c2
1

c2M log M

N

� �
; ELðM ;NÞ ¼ O

N
log M

e
� d2N

c2 log M

� �
: ð48Þ
So, by appropriately choosing the constants c1; c2, we can ensure that the truncation errors are within the re-
quired accuracy. Then, the overall complexity for this choice of parameters would be OðMNq3 log MÞ.

Next, we illustrate our construction of quadrature rules for the far and local parts for the case in which
d ¼ lDt. It is straightforward to extend for the case where d ¼ d�.

5.2. Far part

The far part uFðx; tÞ is computed by evaluating the discrete sum (7) using INUFFT. To update the coeffi-
cients Cn, we first compute the Chebyshev coefficients of f̂ nðsÞ and then use product integration rule to eval-
uate the update (11) and then the recurrence (10).

In the interval ½t � lDt; t þ Dt � lDt�, f̂ nðsÞ is computed at the Chebyshev nodes given by
si ¼ t � lDt þ Dt
2

1þ cosðpði� 1Þ=qÞð Þ; i ¼ 1; . . . ; q: ð49Þ
At each si, we use CNUFFT to compute f̂ n, defined in (9). Given f̂ nðsiÞ, we compute its Chebyshev coefficients8

f̂ nðkÞ; k ¼ 0; . . . ; q� 1. By the change of variable s ¼ t þ ð1� h� lÞDt,
U n½f̂ � ¼ Dte�jnj
2p2lDt

Xq�1

k¼0

f̂ nðkÞ
Z 1

0

e�ðjnj
2p2DtÞhT kð�2hþ 1Þdh: ð50Þ
For n1 ¼ 1; . . . ; p; n2 ¼ 1; . . . ; p; k ¼ 1; . . . ; q, we define
Enk ¼ Dte�jnj
2p2lDt

Z 1

0

e�ðjnj
2p2DtÞhT kð�2hþ 1Þ: ð51Þ
Then U n½f̂ � ¼
Pq�1

k¼0f̂ nðkÞEnk: The p2 � q entries of the matrix E can be computed in an optimal Oðp2 � qÞ using
the recurrences (22).
s known that the q Chebyshev coefficients can be computed in Oðq log qÞ time using FFT. Also to compute f̂ n, we need f ðy; siÞ from
cewise Chebyshev polynomial representation of f. This again can be accomplished in optimal time using inverse FFT.
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5.3. Local part

Let us rewrite (12) as
Table
CPU T

N ¼ M

16
64

256
1024
4096

16384

N is th
Cheby
uLðx; tÞ ¼
Z t

t�lDt
gðsÞds; gðsÞ ¼

Z
X

e�
jx�yj2
4ðt�sÞ

4pðt � sÞ f ðy; sÞdy: ð52Þ
We can easily show that g is a smooth function in time. To compute uL, we first compute the Chebyshev coef-
ficients of gðsÞ in each of the l previous time steps:
uLðx; tÞ ¼
Xl

k¼1

Z t�ðk�1ÞDt

t�kDt
gðsÞds ¼

Xl

k¼1

Xq�1

n¼0

gk
nIn; where In ¼

Z 1

�1

T nðnÞdn ¼ 1þ ð�1Þn

1� n2
;

where gk is the Chebyshev polynomial representation of g in ðt � kDt; t � ðk � 1ÞDtÞ. We compute gk by eval-
uating gðsÞ at the Chebyshev nodes
si ¼ t � kDt þ Dt
2

1þ cosðpði� 1Þ=qÞð Þ; i ¼ 1; . . . ; q: ð53Þ
At each si, we use CFGT to optimally compute g.

6. Numerical results

In this section, we illustrate the performance of the algorithms presented by testing them on a set of syn-
thetic problems. The criterion we used to construct the quadtree is spectral thresholding, as discussed in [11]: a
leaf node is subdivided if the tail of Chebyshev coefficients it owns has not decayed sufficiently. Upon com-
pletion of the tree construction, every leaf node contains the coefficients fm;n such that
Xq�1

k¼0

jfk;q�k�1j < ��: ð54Þ
We implemented the algorithms presented here in MATLAB. For each test problem, we report CPU times
w.r.t. a base case.

6.1. Chebyshev FGT

We present the convergence results for CFGT on two examples. In Table 1, we present the results for the
Gauss transform of a function that is uniformly smooth. In Table 2, we consider the function shown in Fig. 5.

Free space initial condition problem. Consider the initial condition problem,
ou
ot
¼ Du in Rd ; s:t: uðx; 0Þ ¼ u0ðxÞ: ð55Þ
1
ime and relative errors in computing Gdf ðxÞ ¼

R
X e�

jx�yj2
d f ðyÞdy with bandwidth d ¼ 0:1; here f ðyÞ ¼ sin2ð20y1Þ sin2ð20y2Þ

q

4 8 16

CPU time Error CPU time Error CPU time Error

1 5.56e�02 6.67e�01 1.68e�04 1.00e+00 2.41e�08
1.67e+00 5.66e�03 1.67e+00 7.04e�06 2.00e+00 1.22e�12
2.33e+00 6.83e�05 3.00e+00 4.11e�09 4.33e+00 3.00e�15
7.00e+00 3.60e�06 8.00e+00 1.28e�11 1.07e+01 3.74e�15
2.20e+01 2.17e�07 2.57e+01 4.65e�14 3.43e+01 4.86e�15
8.03e+01 1.34e�08 9.60e+01 4.67e�15 1.23e+02 4.48e�15

e number of leaf nodes, M is number of target points (which are chosen randomly in the unit box ½0; 1�2) and q is the order of
shev polynomials used to approximate f ðyÞ in each leaf node. CPU times are relative to the base case N ¼ 16 and q ¼ 4.



Fig. 5. In this figure, we give an example of a tree-based representation of the function f shown at the left most figure. The quadtrees were
constructed top–down, starting from the unit square, and refining using thresholding (54) with �� ¼ 10�5. The leaf nodes of the quadtree
shown in the middle use cubic polynomials, while the rightmost tree uses 15th-degree polynomials. While the cubic polynomial tree uses
40,513 leaf nodes, the 15th-order polynomial tree meets the required accuracy criterion with just 49 leaf nodes. Taking into account the
storage per leaf node ðq2Þ, the high-order requires 50 times less storage. For tighter discretization tolerances, this factor becomes even
greater.

Table 2
Performance of 16th-order CFGT in computing Gdf ðxÞ of the function shown in Fig. 5, for different values of d

�� N ¼ M d

10�2 10�4 10�6

CPU time Error CPU time Error CPU time Error

10�6 79 1 5.50e�012 2.35 3.26e�010 0.02 8.53e�010
10�8 142 1.27 2.40e�014 3.99 4.69e�012 0.04 1.22e�010
10�10 265 1.95 7.91e�016 5.99 2.07e�013 0.07 8.39e�014
10�12 481 2.50 7.91e�016 9.53 2.11e�013 0.15 2.70e�016

The exact solution is analytically computed. Here �� is the discretization tolerance based on which the quadtree is constructed using the
criterion (54). We can see that the convergence is independent of d. The trend in the CPU times can be explained as follows: when d
decreases, the number of source/target boxes increase and that in turn increases the total time. As d becomes really small, the direct
evaluation version of CFGT is invoked and hence CPU time is reduced. CPU times are relative to the base case d ¼ 10�2 and N ¼ 79.
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The exact solution is given by
uðx; tÞ ¼ 1

4pt

Z
X

e�
jx�yj2

4t f ðyÞdy: ð56Þ
Now, assuming X ¼ ½0; 1�2 and u0 be given in terms of piecewise Chebyshev polynomial coefficients, we can use
CFGT for fast and high-order computation of (56). Here, we solve the free space initial condition problem
(56) with complicated function u0, as shown in Fig. 6(a).

6.2. Chebyshev NUFFT

Here, we present the convergence results for computing the Fourier coefficients using CNUFFT. We test
two functions: the first is discretized using a uniform tree, while the second is discretized using a nonuniform
tree (see Tables 3 and 4).

6.3. Volume potential

Here we present two examples in which we test our method for the case of the heat potential evaluation. In
the first example, we use a spatial grid that is regular at each time step. In the second example, the spatial grid
is nonuniform and is different at each time step.



Fig. 6. Solution of the free space initial condition problem (55) at different times. The initial condition u0 is discontinuous and oscillatory.
The input is a quadtree that has 94 leaf nodes, each containing a 16th-order Chebyshev polynomial representation of u0.

Table 3
Results for CNUFFT of a non-periodic smooth function, f ðxÞ ¼ sinð20x1Þ sinð20x2Þ for x 2 ½0; 1�2

M q

4 8 16

CPU time Error CPU time Error CPU time Error

64 1 2.91e�01 1.0 1.18e�05 2.0 1.52e�14
256 1.0 1.16e�02 2.0 2.20e�08 2.0 5.67e�14

1024 5.5 5.71e�04 7.0 2.06e�10 8.5 9.76e�14
4096 19.5 3.30e�05 21.5 9.41e�13 24.5 1.22e�13

The oversampling ratio was set to R ¼ 4 and the spreading distance to M sp ¼ 12. CPU times are relative to q ¼ 4 and M ¼ 64.

Table 4
Performance of 8th- and 16th-order methods in computing the Fourier coefficients of the function given in Fig. 5

Discretization tolerance q

8 16

M CPU time M CPU time

10�4 244 5.7 37 1
10�6 859 5.3 79 2.0
10�8 3163 2.7e+01 142 2.3
10�10 11380 1.8e+02 265 4.0
10�12 42460 2.1e+03 481 4.9

Here M is the number of leaf nodes. CPU times are relative to the base case q ¼ 16 and �� ¼ 10�4.
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Table 5
Absolute errors in computing the volume potential for Example 1

N M q ¼ 4 q ¼ 8 q ¼ 16

8 4 5.83e+00 4.57e�02 7.42e�08
16 16 1.08e�01 4.03e�05 3.22e�13
32 64 1.72e�03 8.47e�08 1.89e�15
64 256 3.18e�06 3.52e�10 2.16e�15

The number of targets is M and they are randomly generated within x ¼ ½0:4; 0:6�2. The total time is taken as T ¼ 1. Here we report the
discrete L1ðx� ½0; T �Þ norm of the error. In this example, we fixed the parameters to d ¼ 0:002 and p ¼ 55 so that truncation errors are
within machine precision.
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Fig. 7. Quadtree for f ðx; tÞ, defined in Example 2. The tree is generated using 8th-order Chebyshev polynomials, with discretization
tolerance �� ¼ 10�7. A contour plot of the solution uðx; tÞ is superimposed on the quadtrees. Evidently, the data structure changes at each
step. We numerically compute uðx; tÞ at targets that are randomly located within x ¼ ½0:4; 0:6�2 for each time step and compare with the
exact solution in Table 6.
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Example 1. Here, we evaluate the volume potential (3) of the function,
9 He
f ðx; tÞ ¼ sinðnpx1Þ sinðnpx2Þ np cosðnptÞ þ 2n2p2 sinðnptÞ

 �

with n ¼ 10: ð57Þ
The exact solution is given by
uðx; tÞ ¼ sinðnpx1Þ sinðnpx2Þ sinðnptÞ; ð58Þ

which satisfies the initial and boundary conditions (2). Starting from a regular grid in space–time, we progres-
sively refine it and the absolute errors for each discretization is reported in Table 5.

Example 2. In this example, we compute the volume potential due to a forcing function that requires time
dependent spatially adaptive grid. Here f ðx; tÞ is constructed by the exact solution given by9
uðx; tÞ ¼
X3

i¼1

t e�air2
i r2

i ¼ kx� ciðtÞk2
2

ciðtÞ ¼ 0:5þ 0:05
cosð2pðt þ i=3ÞÞ
sinð2pðt þ i=3ÞÞ

� �
; ai ¼ 400þ 100� 4i:

ð59Þ
The Gaussian centers ciðtÞ move in a circular motion around the center of X. As the bandwidth of the Gaus-
sians differ, the adaptive data structure is unsymmetric and hence it varies with time as shown in Fig. 7.

At each time step ½kDt; ðk þ 1ÞDt�, we construct the quadtree Qk so that the polynomial coefficients of
f ðx; kDtÞ in each leaf node obey (54).
re uðx; tÞ satisfies the boundary conditions approximately.
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7. Conclusions

We presented three transforms that can be applied to functions represented using piecewise Chebyshev
polynomials: we have extended fast Gauss and nonuniform FFT transforms and, based on the fast algorithm
of Greengard and Strain [13], we have presented a fast and high-order accurate algorithm for the computation
of volume heat potential. We presented several numerical results in which the convergence rates of our 16th-
order accurate scheme are verified.

We have set the initial condition in (2) to zero just for the ease of exposition. Our algorithm extends in an
obvious way in the more general case. Given a piecewise Chebyshev polynomial representation of u0ðyÞ, we
can use CFGT and CNUFFT for the fast and accurate evaluation of the volume potential that arises due
to u0 given by
10 Wh
n ¼ 0.
V½u0�ðx; tÞ ¼
Z

X
Gðx; t; yÞu0ðyÞdy:
Besides extending the method to the 3D case, there are two important directions that we have not explored: a
posteriori error-based adaptive scheme; and the case of imposing boundary conditions on domains with com-
plex geometries. Both directions are part of ongoing work.

Returning to the 3D case, the extension of the method to higher dimensions is straightforward using tensor
products for the Gauss transform, and 3D FFTs. The complexity constants, however, increase exponentially
(in the dimension) [15,16]. Optimizing and parallelizing the code becomes crucial for practical applications.
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Appendix A. Olver’s algorithm

Consider the computation of the moments
InðaÞ ¼
Z 1

0

e�axT nð2x� 1Þdx; 0 6 n 6 q� 1: ð60Þ
We can use the recurrence (22) to compute In for n > 2 from base conditions I0; I1; I2. The recurrence (22) is an
instance of second-order nonhomogeneous difference equation. Let us rewrite the recurrence as
In þ anInþ1 þ bnInþ2 ¼ fn; 1 6 n 6 q� 1 ð61Þ

with the coefficients, an; bn; fn defined appropriately. Since this is a second-order equation, it requires two ini-
tial conditions10 I1 and I2. The scheme of Olver can be written as follows:
Solve : IN
n þ anIN

nþ1 þ bnIN
nþ2 ¼ fn; 1 < n 6 N : ð62Þ

s:t: IN
Nþ1 ¼ 0; IN

1 ¼ I1: ð63Þ
For the recurrence (22), we can prove that,
lim
N!1

IN
n ¼ In; n P 1: ð64Þ
When a is small, for which direct computation using recurrence (22) is unstable, we use Olver’s algorithm. For
these values of a, the convergence (64) is quite rapid i.e., even for moderate values of N,
max
1<n6q�1

jIN
n � Inj < �: ð65Þ
en the recurrence (22) is written in the form (61), we see that b0 ¼ 0. Hence n ¼ 1 pertains to the first initial condition, instead of
So, we require three base conditions for the recurrence (22).



Table 6
Performance of the 16th-order method on Example 2

�� 10�4 10�6 10�8 10�10

Mmax 91 136 277 415
N 8 16 32 64
Error 2.35e�06 1.00e�07 2.32e�11 1.78e�12

At each time step, the quadtree is constructed using the criterion
Pq�1

k¼0jfk;q�k�1j < ��jjf ðx; kDtÞjj1 for k ¼ 0; 1; . . . ;N � 1: Mmax is the
maximum number of leaf nodes over all the quadtrees at different times. Here, the targets are randomly located in x ¼ ½0:4; 0:6�2 and the
error is measured in discrete L1ðx� ½0; T �Þ norm.

Table 7
The threshold values jajth for different values of q

q 4 8 16
jajth 1/2 4 16

Whenever a P jajth, we compute InðaÞ using the recurrence (22). For a < jajth, we use Olver’s algorithm with N ¼ 2q þ 1.
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More precisely, for double precision ð� ¼ 10�12Þ, we use Olver’s algorithm with N ¼ 2qþ 1 to compute (22), if
jaj < jathj. For different values of q, we tabulate the threshold values in Table 7.

We solve (62) using LU decomposition. For smaller values of jaj than the threshold, we can achieve the
required precision even with smaller N, but we do not carry the analysis any further.

Appendix B. Recurrences for the Gauss kernel

Defining Inðk; gÞ as,
11 Th
can sh
Inðk; gÞ ¼
1

k

Z 1

�1

e�
y�g
kð Þ

2

T nðyÞdy; 0 6 n 6 q� 1; ð66Þ
we can derive the following recurrence, that is valid for n > 3:
In ¼ 2gIn�1 þ 2 ðn� 1Þk2 þ 1

n� 3

� �
In�2 � 2g

n� 1

n� 3

� �
In�3 þ

n� 1

n� 3
In�4 � Cn; ð67Þ

where Cn ¼ kðn� 1Þ e�
y�g
kð Þ

2 T n�1

n� 1
� T n�3

n� 3

� �� �1

�1

: ð68Þ
The recurrence (67) is unstable for larger values of k. Since, (67) is a fourth-order nonhomogeneous system,
one can use Lozier’s algorithm [26] for stable computation for larger values of k.

Since, however, we can precompute these moments ðInÞ11 by simply use a high-order smooth quadrature.
Whenever q > 4 and k > 1

8
, we use a 24th-order quadrature rule of [1], with q trapezoidal nodes to compute In

for 4 < n < q.

Appendix C. An extension of FGT

For some applications, one might be interested in computing the discrete Gauss transform (15) for rela-
tively small values of d. For instance, consider the free space initial condition problem (55) with the initial con-
dition given by,
u0ðxÞ ¼
XM

j¼1

qjdðx� yjÞ: ð69Þ
e direct evaluation version of CFGT does not precompute the moments. But, for the cases in which this algorithm is applicable, we
ow that k 6 1

8, so that the recurrence (67) can be used to compute the moments directly.
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Fig. 8. Here we illustrate the extension of FGT for efficient computation of (70) at smaller times. (a) From the source distribution fyjg
M
j¼1

we construct a quadtree Q so that each of its leaf contains no more than s points. In this example, we have set s ¼ 12. We split Q into two
trees: QDirect has leaves that are larger than the source boxes and QExpand has smaller ones. (b) Here a target x and the support of Gaussian
centered at x is shown. The leaf nodes that are shaded belong to the interaction list of x. The sources that belong to these leaves interact
directly. This would avoid the need to generate source boxes that are mostly empty. (c) The red boxes are the source boxes that are within
the interaction list of the target box containing x. The sources that belong to these boxes interact with x through Hermite/Wave
expansions. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this article.)

S.K. Veerapaneni, G. Biros / Journal of Computational Physics 227 (2008) 7768–7790 7789
As this function cannot be represented using piecewise polynomials, CFGT is not applicable. Substituting u0

in (56), we get
uðx; tÞ ¼ 1

4pt

XM

j¼1

qje
�
jx�yj j2

4t : ð70Þ
The aim is to compute u at fxkgM
k¼1 and at any given time t. A direct application of FGT on (70) would be

expensive at small values of t. This is because the number of boxes that FGT requires is inversely proportional
to

ffiffi
t
p

. We now describe an extension of the fast Gauss transform [14] that would enable the fast computation
of (70) for any required t. The strategy is an extension of the idea used in CFGT to the discrete case. We ex-
plain this in Fig. 8.
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